If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+15x-120=0
a = 20; b = 15; c = -120;
Δ = b2-4ac
Δ = 152-4·20·(-120)
Δ = 9825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9825}=\sqrt{25*393}=\sqrt{25}*\sqrt{393}=5\sqrt{393}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{393}}{2*20}=\frac{-15-5\sqrt{393}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{393}}{2*20}=\frac{-15+5\sqrt{393}}{40} $
| 9a^2+15a-50=0 | | 2^4x=8^x+2 | | 180=3y(5y-22) | | 2x+5=3x+7-5 | | 28-w=66 | | 3y=1/2(5y-22) | | 180=5y-22 | | (x+1)(x-1)((x^2)+7x)(x-4)-2-2x=0 | | 5x–18=6x–1 | | (x+1)(x-1)(x-2)-((x^2)+7x)(x-4)-2-2x=0 | | 4(x-1)-x=3(x+5)-114x-x=3x+15-113x-4=3x+4 | | (x+1)(x-1)(x-2)-(((x)^2)+7x)(x-4)-2-2x=0 | | 50=3.75x+41.5 | | 5y+3y=13 | | (x+1)(x-1)(x^2+7x)(x-4)-2-2x=0 | | 12+1=3(4x+1)-2 | | 9a=+99 | | x/10+1/5=3/20 | | x+2=5x+26-2 | | 10(x1/2)=3x+5+7x | | 5(x-9)=30-15 | | 4y^2+15y=13y-6 | | 6/x+2/(2x)=8/x+1/3 | | 7x-48+3x=180 | | 54(1x+-2)=210 | | 2x-15+2x-6=15 | | 3z^2+7z=5z-7 | | 7x-5+4x+25=180 | | n+37=79 | | 0.35^x=0.02 | | 9+3(x+1)=6x | | c÷4-5=4 |